Instructions

- You're welcome to work on these problems individually or in groups.
- If you have any questions, please don't hesitate to raise your hand and call me over! I'll be happy to help.

The Symmetric Group

Q1. [Warm-up.] Write down all the permutations in the symmetric group S_{3}. Express your answer in matrix form. For example, the permutation of $\{1,2,3\}$ given by $1 \rightarrow 2,2 \rightarrow 3$ and $3 \rightarrow 1$ is represented in matrix form as

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right]
$$

Q2. [Multiplication of permutations.] In S_{3}, let

$$
e=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right], \quad s=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right] \quad \text { and } \quad t=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right] .
$$

Determine the following permutations and express your answer in matrix form.
(a) $s e$.
(b) es.
(c) s^{2}. (This is $s s$.)
(d) $s t$.
(e) $t s$.

Q3. [Cycle notation.] The following are permutations in S_{4} that have been expressed in matrix form. Express them in cycle notation.
(a) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right]$.
(b) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right]$.
(c) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right]$.
(d) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1\end{array}\right]$.

Q4. [Inverses.] Referring back to Q2, determine the following permutations. Express your answers in both matrix form and cycle notation.
(a) e^{-1}.
(b) s^{-1}.
(c) t^{-1}.
(d) $(s t)^{-1}$. [Question: How, if at all, is $(s t)^{-1}$ related to s^{-1} and t^{-1} ?]

Q5. [Commutators] An important concept in the proof of the insolvability of the quintic is the notion of commutators of permutations. A commutator of two permutations $s, t \in S_{n}$ is a permutation of the form

$$
t^{-1} s^{-1} t s
$$

Reading from right to left, we interpet this permutation as
perform s, then perform t, then unperform s, then unperform t.
Since the order of multiplication in S_{n} is important, the above is not the same as $s^{-1} t^{-1} t s$, which would result in the identity permutation.
(a) Let $s=(12)$ and $t=(13)$ in S_{3}. Find the commutator $t^{-1} s^{-1} t s$.
(b) [Challenging!] Show that (12345) is a commutator of permutations in S_{5}. That is, find permutations s and t in S_{5} such that

$$
(12345)=t^{-1} s^{-1} t s
$$

[Hint: There are several possible t and s. Try to find s given that $t=\left(\begin{array}{llll}2 & 3 & 5 & 1\end{array}\right)$.]
Note: A key step in the proof of the insolvability of the quintic is to show that every 5 -cycle permutation in S_{5} (like (12345)) is a commutator of two other permutations, which are themselves 5 -cycles. So then every 5 -cycle is a commutator of 5 -cycles which are commutators of 5 -cycles which are commutators of 5 -cycles, etc. (Nothing like this happens in S_{2}, S_{3} or S_{4}. There are no "infinitely long" commutators of commutators. This is part of the reason why we have quadratic, cubic and quartic formulas!)

