Instructions

- You're welcome to work on these problems individually or in groups.
- If you have any questions, please don't hesitate to raise your hand and call me over! I'll be happy to help.

The Symmetric Group

Q1. [Warm-up.] Write down all the permutations in the symmetric group S_3 . Express your answer in matrix form. For example, the permutation of $\{1, 2, 3\}$ given by $1 \rightarrow 2, 2 \rightarrow 3$ and $3 \rightarrow 1$ is represented in matrix form as

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}.$$

Q2. [Multiplication of permutations.] In S_3 , let

$$e = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \quad s = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
 and $t = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}.$

Determine the following permutations and express your answer in matrix form.

- (a) *se*.
- (b) *es*.
- (c) s^2 . (This is ss.)
- (d) st.
- (e) ts.
- **Q3.** [Cycle notation.] The following are permutations in S_4 that have been expressed in matrix form. Express them in cycle notation.

(a)	$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$\frac{2}{2}$	$\frac{3}{3}$	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$.
(b)	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	21	$\frac{3}{4}$	$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$.
(c)	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\frac{2}{3}$	$\frac{3}{4}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$.
(d)	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	$\frac{2}{4}$	$\frac{3}{3}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$.

Q4. [Inverses.] Referring back to Q2, determine the following permutations. Express your answers in both matrix form **and** cycle notation.

(a)
$$e^{-1}$$
.

- (b) s^{-1} .
- (c) t^{-1} .
- (d) $(st)^{-1}$. [Question: How, if at all, is $(st)^{-1}$ related to s^{-1} and t^{-1} ?]
- **Q5.** [Commutators] An important concept in the proof of the insolvability of the quintic is the notion of commutators of permutations. A commutator of two permutations $s, t \in S_n$ is a permutation of the form

 $t^{-1}s^{-1}ts.$

Reading from right to left, we interpet this permutation as

perform s, then perform t, then unperform s, then unperform t.

Since the order of multiplication in S_n is important, the above is **not** the same as $s^{-1}t^{-1}ts$, which would result in the identity permutation.

- (a) Let s = (12) and t = (13) in S_3 . Find the commutator $t^{-1}s^{-1}ts$.
- (b) [Challenging!] Show that $(1\ 2\ 3\ 4\ 5)$ is a commutator of permutations in S_5 . That is, find permutations s and t in S_5 such that

$$(1\ 2\ 3\ 4\ 5) = t^{-1}s^{-1}ts.$$

[Hint: There are several possible t and s. Try to find s given that $t = (2 \ 3 \ 5 \ 1 \ 4)$.]

Note: A key step in the proof of the insolvability of the quintic is to show that every 5-cycle permutation in S_5 (like (1 2 3 4 5)) is a commutator of two other permutations, which are themselves 5-cycles. So then every 5-cycle is a commutator of 5-cycles which are commutators of 5-cycles which are commutators of 5-cycles, etc. (Nothing like this happens in S_2 , S_3 or S_4 . There are no "infinitely long" commutators of commutators. This is part of the reason why we have quadratic, cubic and quartic formulas!)